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Abstract

In this paper we study the link between the asymptotic expansion of Tian—Yau—Zelditch [J. Diff.
Geom. 32 (1990) 99] and the quantization of compact K&hler manifolds carried out in [J. Geophys.
7 (1990) 45; Trans. Am. Math. Soc. 337 (1993) 73].
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1. Introduction

Tian[20] solved a conjecture posed by Yau by proving that a polarized Kahler ngetric
on a compact complex manifold can be obtained as the limit of Bergmann metricgfn
In that paper Tian introduced, for all non-negative integex smooth function oM which
we will denote byT;, (x). This function has been extensively studied by several authors and
it is strictly related to the stability of Ké&hler—Einstein metrics. Zeldif2h] showed that
T,» (x) admits an asymptotic expansion (in the variableand Lu[14] calculates the first
three terms of this expansion (s8ection 2. The first observation of the present article is
that Tian’s function is, up to the facter” (n is the complex dimension @) one of the key
ingredients in the framework of quantization of Kahler manifolds carried d@tin,15,16]
In this context the function is denoted by (x) and it is called thé&psilon functionCahen,
Guttand Rawnslel4,5], starting with a geometric quantization of a Kéhler manifdifj )
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introduced by Kostant and Souriau, beautifully generalized Berezin's mi&htmthe case
of compact Kéhler manifolds and, under suitable conditions, they obtain a deformation
quantization of M, ).

The concept of quantization deformation started \WitR). It is defined in terms of a star
product which is an associative formal deformation of the usual product of functions and of
the Lie algebra structure given by the Poisson bragKetssociated to the symplectic form
w (herew is the Kahler structure associated to the Kahler mg)i¢he method to construct
ax-product for compact Kahler manifolds given by C—G—R involves making a correspon-
dence between operators and functions (their Berezin symbols), transferring the operator
composition to the symbols, introducing a suitable parameter into the Berezin composition
of symbols, taking the asymptotic expansion in this parameter on a large algebra of func-
tions and then showing that the coefficients of this expansion satisfy the cocycle conditions
to define a star product on the smooth functions Geetion 3. In general to define and
to find this asymptotic expansion is a difficult task.[#h5] C—G—R considered a special
class of quantization, calleggular, where the functior,, (x) is constant for alln > 1.
Examples of Kahler manifolds which admit a regular quantization are the homogeneous
and simply connected Kahler manifolds.[H], the existence of a (convergertproduct
for compact coadjoint orbits and [a1] for general compact coadjoint orbits was shown.

It is worth to mention that irf17] can be found an analogous result for general Kahler
manifolds.

The aim of this paper is two-fold. Firstly, itheorem 4.3ve observe that an asymptotic
expansion given by C—G—R works for the (larger) class of projectively induced Kahler forms
on M. Secondly, disregarding the applications to the theory of quantization (actually using
some of the results of this theory), we study the functignand some of its geometric
properties. In particular we address the following natural problems:

1. Classify all Kéahler manifolds which admit a regular quantization.
2. Study when the Zelditch’s asymptotic expansio,ptx) is finite.

Ouir first result isTheorem 5.3vhere we prove that a regular quantization of a compact
homogeneous Kéahler manifold is necessarily homogeneoud laedrem 5.68vhere we
describe the link between Zelditch’s asymptotic expansion and the expansion given by
Theorem 4.3 proving that the knowledge of the expansionTéfeorem 4.3completely
determines the one @i, (x) (and ofe,, (x)).

The relevance of this fact lies in that the explicit calculatioff,p€x) is usually very hard
while the one ofTheorem 4.3s determined more easily from the knowledge of Calabi’s
diastasis function. In fadt,, (x) can be computed by knowing all the powers of the quantum
line bundle oven and by an explicit calculation of an orthonormal basis fortRemetric,
while the expansion ofFheorem 4.3equires only the computation (independentlyfof
Calabi’s function.

The paper is organized as follows. &ection 2we recall the Tian’s construction for
polarized Kéhler metrics, we give the definition of the functiy(x) and we describe
its Zelditch’'s asymptotic expansion. Bection 3we recall the definition of the function
€ (x) in the context of quantization of Kahler manifolds, its link wit(x) and the C-G-R
construction. IrSection 4ve proveTheorem 4.3Finally, Section Ss dedicated to problems
1 and 2; our main results afdheorems 5.3, 5.5 and 5.6
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2. Thework of Tian, Zelditch and Lu

Let M be a projective algebraic manifold, namely a compact complex manifold which
admits a holomorphic embedding into some complex projective €paée The hyperplane
bundle onCPY restricts to an ample line bundle on M, which is called gpolarization
on M. A Kahler metricg on M is polarizedwith respect ta. if the corresponding Kahler
form w represents the first Chern classL) of L and this happens if and only df is an
integral form. Given any polarized Kéhler metgon M, one can find a hermitian metric
h on L with its Ricci curvature form Ri@:) = w. Here Righ) is the 2-form onM defined
by the equation:

Ric(h) = —Zi—naé logh(o(x), o(x)), (1)

for a trivializing holomorphic section : U ¢ M — L \ {0} of L.

For each positive integet, we denote by.” = L®" themth tensor power of.. Itis a
polarization of the Kéhler metrimgand the hermitian metrie induces a natural hermitian
metric i,, on L™ such that Ri¢h,,) = mw. Denote byH%(M, L™) the space of global
holomorphic sections of™. It is in a natural way a (finite dimensional) hermitian space
with respect to the norm

Isllnm = (s, ), = /M hm(S(X),S(X))%(X) Vs e HO(M, L™). @)

For sufficiently largem we can define a holomorphic embeddingMfinto a complex
projective space as follows. L&t ..., s:i”m_l), be a orthonormal basis fai® (M, L™)
and leto : U — L be a trivializing holomorphic section on the open Eett M. Define
the map

®3)

@ U — C\ {0} : x > (SO(X) sdm_l(x)> .

ox) 7 ox)

If ¢ : V — L is another holomorphic trivialization then there exists a non-vanishing
holomorphic functionf on U N V such that(x) = f(x)t(x). Therefore, one can define a
holomorphic map

@m M — CPIn—1, (4)

whose local expression in the open &ets given by(3). SinceL is ample, by Kodaira’s
theorem fomn sufficiently large, the map,, is an embedding.

Let grs be the standard Fubini—Study metric 6% —1, namely the metric whose
associated Kahler form is given by

. dp—1
s 2
WFs = Z33|09 Z(:) |21, 5)
J:

for a homogeneous coordinate system |[. ., z4, —1] in CP—1 This restricts to a K&hler
metricg,, = ¢} grson M. Its associated Kahler form,, = ¢, wrsis cohomologous to
mw and is polarized with respect f0”. Tian[20] christened the set of normalized metrics
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gm/m as theBergmanmetrics onM with respect td. and solves a conjecture posed by Yau
by proving that the sequengg, /m C?-converges to the polarized metgcThis result was
further generalized by Rugii8] who proved theC°°-convergence. As already observed
by Tian, the difference betweey), /m and the metrig can be measured by the function

dn—1
Tu() = > ST, - (6)
j=0
Indeed, it is easily seen that for all non-negative integer
Om [
— = ——adlog T, (x). 7
=@t 53010 T, (x) (7

Tian’s Theorem was generalized by Zeldifeli], who has used the theory of Szegd Kernel
on the unit circle bundl&.* over M, which proves the following theorem.

Theorem 2.1 (Zelditch). There is a complete asymptotic expansion

dm_l
Tu(x) = > IS7 W2 = ao()m" + ar()m" ™ + ag(xym" 2 4 . | 8)
j=0

for certain smooth coefficients (x) with ag = 1. More preciselyfor any m

—j —R
1T () = Y ajm" |l e < Cram™ ™%,
Jj<R

whereCg ; depends oOIR, k and the manifold/.
Recently Lu[14], by using Tian’s peak section method, proved the following theorem.

Theorem 2.2 (Lu). Each coefficients ;(x), given by the asymptotic expansi¢8) is a
polynomial of the curvature and its covariant derivatives at x of the metric g. Such a
polynomials can be found by finitely many steps of algebraic operations. Furthermore
a1(x) = p/2,wherep is the scalar curvature of the polarized metric g

3. Thework of Cahen, Gutt and Rawnsley

In the quantum mechanics terminology a cougle ) such that Ri¢h) = w is called
a geometric quantizatioof the Kahler manifold M, ) and L is called aquantum line
bundle For any non-negative integer, (L™, h,,) is a geometric quantization of the Kahler
manifold (M, mw). Letx € M andgq € L™ \ {0} a fixed point of the fibre ovet. If one
evaluates € HO(M, L) atx, one gets a multiplé, (s) of ¢, i.e.s(x) = §,(s)q. The map
8q HOM, L™) — Cis a continuous linear functionpd] hence by Riesz’s theorem, there

exists a uniqueg’ e HO9(M, L™) such tha, (s) = (s, e;”)hm Vs € HO(M, L™), i.e.

s(x) = (s, eZ’)hmq. 9
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It follows, by (9), that

m _ =—1_m *
€cq=1C "¢ Yec € C*.

The holomorphic sectiogf; is called thecoherent stateelative to the poing. Thus, for all
m > 1, one can define a smooth function &h

1
en(®) = —hu(q, 9lle I, (10)
whereqg € L™ \ {0} is any point on the fibre of. Now it is easily seen that
dm—1
m"em(x) = hu(q. Qlleglls = > hn(s] (). 87 () = T (x), (11)
Jj=0

whereT;, (x) is defined by(6) and where” is an orthonormal basis fd#®(M, L™). This
gives the claimed link between the functigp(x) and T, (x).

Remark 3.1. The factor ¥m" in the definition(10) does not appear in the definition of
em(x) given in[4,5] since they consider the?-product

/ B (5(x), s(x)) (x), 12)
M

(mw)"

n!

which equalsn” times theZ-product| - |7 given by(2).

LetA : HO(L, M) — HO(L, M) be alinear operator. The symbolafs the real analytic
function onM defined by

(A eq)n

Ax) =
2 <eqv eq)h

. q €L\ {0},
where L, denotes the fibre of. The_functionA has an analytic continuation to an open
neighbourhood of the diagondd x M given by

At y) = Lol
(eq7 €q’>h

, qe L\ {0}, 61/6 Ly\{o}'

We denote byE(L) the space of symbols of bounded linear operators. The composition
of operators orH(M, L) gives rise to a product for the corresponding symbols, which is
associative. It is given by the integral formula

A B)(x) = fMiux, DB, DY D)2 ), (13)
where
l{eqs eq)n]?
Yix, y) = o Cainl
B e Pleq 12

is the so called 2-point function globally defined functiomdix M. The quantization ieeg-
ularif €, is constantforalt: > 1. The proof of the following proposition can be founddi.
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Proposition 3.2. Let (L, h) be a regular quantization of a Kéahler manifo(d/, w) then
the following facts hold true

() E™) c E@mth;

(i) UnE(L™)is dense orCO(M).

From the nesting property one sees that i3 belongs toE(L!), m > I one may define

n

(At BY() = m" /M A DBO DY Ven ) 2 ). (14)
Here
(e, €™y, 12
Y, y) = L Calhn

2 m2
A

is the 2-point function forL™. If the quantization is regular then one can prove that
Y (x, y) = Y™ (x, y). Observe also that

wn
1=1%,1=m" / Vim (X, Y)em (9) — (). (15)
M n:
In [5], it can be found the proof of the following theorem.

Theorem 3.3. Let(L, k) be a regular quantization of a K&hler manifold/, ). Then the
following facts hold true

(i) Forany f € E(L') the integral
Fu) =" [ e 5w n o, m= (16)
M H
admits an asymptotic expansies m goes to infinily

Fn(x) ~m™"Cr(f)(x), (17)

where theC,’s are smooth differential operators of ord2r depending only on the
geometry ofVf. Moreover the leading term is given b§o(f) = f.
(i) Thex,,-product given by14)admits an asymptotic expansion for m tending to infinity

Asy B~m™"Cr(A, B),

whereC, are smooth bidifferential operators defined by the geometry alone. Further-

more
Co(A, B)(x) = A(x) B(x), (18)
(C1(A, B) — C1(B. A () = ';{A, B) (). (19)

where{, } is the Poisson bracket of functions on M associated.to

In the case of flag manifolds or generalized flags manifolds the asymptotic expansion
defined above defines an associative star produc{%sk#).
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4. An asymptotic expansion for projectively induced Kahler metrics

We start by defining the diastasis function. We refdBidor details and further results.
A potential for the Kéhler forna is a real valued functiow defined on a open sét ¢ M
satisfying

i -
= —0309.
@ 4

A potential is not unique: it is defined up to the sum with the real part of a holomorphic func-

tion. Therefore, since is real analytic a potentia can be complex analytically continued

to an open neighbourhodd c U x U of the diagonal. Denote this extension &yx, y).

It is holomorphic inx and antiholomorphic ity and, with this notationg (x) = &(x, x).
Calabi’s diastasis functioP : V — R, is defined by

D(x,y) = @(x,X) + @(y, y) — P(x, y) = P(y, X).

Itis real valued sinc@(x, y) = @(x, y) and it is independent from the potential chosen.

Example 4.1. In the case oM = CP" endowed with the Fubini—Study formgs the
diastasis can be written in terms of the coordinate&iri! as
241,112
Z w
Des(e(2), () = 2logh I 117,
[{z, w)|
wherer : CN*1\ {0} — CPV is the canonical projection and where we are denoting
by (-, ) the standard hermitian metric @"**. In particularD > 0 unlesst(z) = n(w)
whereD = 0. Observe also that the function@s@-m)/2 = |z w)|2/||z|I2|w|? is
globally defined orC PV x CP" and vanishes on the diagonal.

Following [5] we now describe the link between the diastasis function and the Epsilon
function. First since the functiog,, (x) is real analytic we can take its analytic extension
€m (x, y) to a neighbourhood of the diagonal holomorphic in the first variable and antiholo-
morphic in the second. One can prove the following (see formula (1.11), Sectigip) of

e M 2 e (x, 5)1? = €m()em () ¥m (. ), (20)
where
[CACATME
Ym(x,y) = ————,
" AR
is the 2-point function fod.™ (cfr. previous section).

Observe that since the right hand side(2) is globally defined on\f x M then the
function e MPY/2|¢, (x, y)|2 is a well-defined function oM/ x M even if the single
functions € MPY/2 and|e,, (x, y)|? are a priori defined only in a neighbourhood of the
diagonal.

From now on we will assume that the metgi¢resp. the associated Kéhler fo) is
projectively inducednamely there exists a holomorphic embeddingM — CP" such
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that¢*grs = g (equivalentlyp*wrs = w). Observe that this condition is automatically
satisfied wheriM, ») admits a regular quantization. Indeed by form{Tawith m = 1 one
getsw = w1 = ¢jwrs. As aresult due to Calaf8] the Kahler formw is then real analytic

and its diastasis functioP is obtained by the restriction, via the mapof the diastasis
function Des on CPY, namelyg* Des = D. Since the mag is an embedding it follows

by the previous example that the diastasis funcfigm, y) vanishes if and only ik = y

and moreover the functiom@®»/2 is globally defined o x M. This function admits

the point of the diagonal as critical points. In fact at these points it has its maximum value,
namely 1 and @”®»/2 = 1 if and only ifx = y.

Suppose now thatL, ) is a quantization of the Kahler manifoldM, w). In [5] the
function e P:%)/2 js shown to be equal to the so calleddaracteristic functiordenoted
there byy (x, y). Furthermore in Proposition 4, Section 1[6f is proved that, ifc,, (x)
in constant for allz > 1, then the Hessian af; (considered as a function of its second
argument only) is given by

Hessy = —27g. (21)

Observe that formulé1)includes the missing factor 2 in formula 1.166F. Nevertheless
a careful reading db] shows that the proof dP1)is based only on the fact that the metric
g is projectively induced, being,, (x) constant and hence it is still valid for the (larger)
class of projectively induced Kahler metrics.

This also implies that Proposition 2 in Section 25jfgeneralizes for projectively induced
Ké&hler metrics.

Proposition 4.2. Let (M, g) be a compact Kéhler manifold and let be its associated
Kahler form. Let V be an open neighbourhood of the zero section of the tangent bundle
p:TM— M,suchthatthemap : V — M x M, X — (p(X), €xp,,,X) is well-defined.
Suppose that the metric g is projectively induced ana/lebe the characteristic function
onM x M. Then there exists an open neighbourhood W of the zero section and a smooth
embeddingt : W — TM such that

(—log¥rp o a o w)(X) = mgpx) (X, X).

By the previous proposition and by a slightly modification of the proof of (iJloéorem
3.30ne gets an asymptotic expansion for projectively induced Kéhler metrics.

Theorem 4.3. Let (M, g) be a compact Kahler manifold and suppose g is projectively
induced. Letf(x, y) be a function defined in a neighbourhood of the diagonalfirk M
such thate~™P*9/2 f(x y) is globally defined and smooth dd x M for m sufficiently
large. Then the integral

Fp(x) = m" / e MDe/2 £, y)“’—”<y), (22)

admits an asymptotic expansi¢as m goes to infiniy

Fn(x) ~ Y m™ Cr(f ) (%), (23)

r>0
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where f(x) is defined asf(x, x) and where theC,’s are smooth differential operators of
order 2r depending only on the geometry of M. Moreguie leading term is given by

Co(H)=f.

Inthe casef = 1 we will denote by ;(x) the function of the previous expansion, namely
Ci(Dx) =bjx). (24)

Remark 4.4. The further step to obtain a quantization deformation for projectively induced
Kahler forms could be to generalize the asymptotic expansion given by Tiheorem 3.3
for this class of Kahler forms.

5. Geometric properties of the Epsilon function

Let (L, h) be a geometric quantization of a Kahler maniféM, ). In this last section
we attack problems 1 and 2 poseddaction 1 We start with problem 1 and so we try to
understand what kind of properties are enjoyed by the Kéhler forms which admit a regular
guantization. First of all as we have already pointed out such a Kahler forms are projectively
induced. Secondly, a large class of these forms is given by the followinf(dfee a proof).

Theorem 5.1. A quantization(L, #) of a homogeneous and simply connected compact
Ké&hler manifold(M, g) is regular.

Recall that a Kéhler manifoldV, w) is homogeneous if the group AW NIsom(M, g)
acts transitively orM, where AutM) denotes the group of holomorphic diffeomorphisms
of M and Ison{M, g) the isometry group ofM, g) (g denotes as usual the Kéhler metric
associated to).

Remark 5.2. Note that the condition of simply connectednes3lreorem 5.1lcannot be
relaxed. In fact the:-dimensional complex torus/ = C"/Z%* endowed with the flat
Kéahler formw is a homogeneous Kahler manifold. On the other hand the flat metric cannot
be projectively induced (see Lemma 22[i®] for a proof) and hence in particular any
quantization of(M, w) cannot be regular (see alfl3] for the calculation of the Epsilon
function in this case).

In view of Theorem 5.%he following question naturally arisels it true that a Kahler
manifold(M, ) which admits a regular quantization is necessarily homogeri2dlesgive
a partial answer to this question in the following theorem.

Theorem 5.3. Let(M, w) be a compact homogeneous and simply connected Kahler mani-
fold. Letw be a Kéhler form on M cohomologousdowhich admits a regular quantization.
Then there existg € Aut(M) such thatf*® = » and henc& M, @) is homogeneous

Proof. By Theorem 5.1 M, w) admits a regular quantization and hence the funatjpis
constant for alln > 1. This implies that all the coefficients of the asymptotic expan@pn
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of T,, (x) = m"¢,,(x) are constant. In particular, Byjheorem 2.2he scalar curvature of the
metricg (the metric whose associated Kéhler form)ds constant. For the same reason the
scalar curvature of the metrgaassociated t@ is constant. Therefore, by applying Theorem
B in [10] one can findf € Aut(M) such thatf*® = w. g

Corollary 5.4. Let @ be a Kahler form onCPY and suppose thatCPY, @) admits a
regular quantization. Then there exists a natural number k Aredl PGL(N + 1, C)) (the
projective linear groupsuch thatf*@ = kwrswherewgsis the Fubini—Study Kéhler form

Proof. Since the first betti number @& P" is 1 there exists a natural numbesuch that
 is cohomologous téwrs and thus byrheorem 5.3here existsf € PGL(N + 1, C) =
Aut(CPV) satisfying f*® = kwrs. O

Another case when the answer to the above question is affirmative isM/tssncomplete
intersection submanifold ot PV

Theorem 5.5. Let (M, w) be a compact manifold which admits a regular quantization.
Suppose thap: (M) is a complete intersection submanifold®P%—1, where the mag:

is the embedding given by formul&) with m = 1. Then(M, w) is either a quadric or a
totally geodesics projective space

Proof. As in the proof ofTheorem 5.3ve deduce that the scalar curvaturegaf con-
stant. Beingp1 (M) a complete intersection and beipgrojectively induced we can apply
Kobayashi's theorenfil2] to conclude thatVf is infact a quadric or a totally geodesics
projective space. O

We now consider problem 2 and then we suppose that the Zelditch’s expangipaxpf
is finite. This means that there exists a natural numbsuch that

enr) = I (x) =1+ Z“f(x). (25)

This condition is obviously satisfied in the case of a regular quantization (with n).
Indeed, when,, is constant it follows by11) that

dim Ho(Mm, L™)
m™ vol(M)

€m = ,

and dimH°(M, L™) is a polynomial of degree did in m by Riemann—Roch—Hirzebruch’s
formula (sed9]). Itis also easy to give examples when the asymptotic expansifip(af
cannot be finite. For example, consider the complex torus endowed with the flat metric.
If the Zelditch’s expansion of;, (x) were finite then alk; would be constant since they
depend on the curvature gfby Theorem 2.2 Thus the EpS|Ion function would be constant
which is impossible byremark 5.2
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In the case of finite asymptotic expansion we getdg)that, in a suitable neighbourhood
of the diagonal

p -
_ aj(x,y)
en(x,5) =14) ==,
j=1
wherea(x, y) are the analytic extensions of the functiangx), j = 1,..., p. Conse-
quently
L, y)
e (e DI =14 =, (26)
where

a(x,y) =a1(x, ) +a1(x,y),  az(x,y) = lar(x, )2 + az(x, ¥) + az(x, y),

and so on. lfw is projectively induced then&P*»/2 js globally defined on¥ x M.
On the other hand@"Px:»)/2|¢, (x, y)|2 is globally defined oM x M for m sufficiently
large (cfr.Section 4 and then emD("*Y)/Zsz(x, y) are globally defined oM x M for all
j=1...,2p. Therefore

wn
m" / e MPEN/2)e, (x, y>|2—(y>
M

zmnf —mD(x, ))/2 Z / e~ MD(x.y)/27 . i, y)—(y)
M

We can now applffheorem 4.30 the above two addenda and get

_ ' _ "
em(x) = m" / & e (x, D2 (0)
M

~14 Z by (X) Z Z Cr(;,r(fj )

r>1 j=1r>0

The first equality follows by formulagl5) and (20and theb;'s are defined by24). Hence
by takingp = 1 and developing up to order 2 in

a1(X) az(X)

en(x) =1+ + 2 + R(m, x)
14 bl(x) + Co(ax(x, x)) n ba(x) + C1(2a1(x)) + Co(2az(x) + a2(x))
o m m?2
+S(m, x),

where lim,_ 0o m2R(m, x) = liM _ 00 m2S(m, x) =
Then we get

b1(x) + Co(ai(x, x)) = b1(x) + 2a1(x) = a1(x),
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namely

a1(x) + b1(x) =0, (27)
and

ba(x) + C1(2a1) + Co(2az(x) + a4 (x)) = az(x),
and by(27)

az(x) = =bi(x) — ba(x) + 2C1(by).

Next, we do the same fgr = 2 and so on. Therefore, one can recursively calculate all
functionsa ;(x) and hence the function, (x). We have then proved the following theorem.

Theorem 5.6. Let (L, ) be a quantization of a compact Kéahler manifaltt, ) with
projectively induced Kahler form. Suppose that Zelditch’'s asymptotic expansion of the
functionT,, (x) is finite. Then the functioa, (x) can be obtained by the knowledge of the
bj(x)’s and of the operator€';’s applied to theb;'s.

Remark 5.7. Observe that, as we have already noticed, in the case of a regular quantization
the Kahler formw is automatically projectively induced and the asymptotic expansion of
the function Epsilon is finite. In this case the proofldfeorem 5.6s immediate (cfr[5]).

Corollary 5.8. In the same hypothesis #heorem 5.6uppose further that the;’s are
constant. Then the quantization is regular

Proof. It follows by the very definition of the;'s thatC;(by) = b C;(1) = b;by, if the
bi’s are constant. Then, byheorem 5.6¢,, is determined only by thg;’s and hence it is
constant. O
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