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Abstract

In this paper we study the link between the asymptotic expansion of Tian–Yau–Zelditch [J. Diff.
Geom. 32 (1990) 99] and the quantization of compact Kähler manifolds carried out in [J. Geophys.
7 (1990) 45; Trans. Am. Math. Soc. 337 (1993) 73].
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1. Introduction

Tian [20] solved a conjecture posed by Yau by proving that a polarized Kähler metricg

on a compact complex manifoldM can be obtained as the limit of Bergmann metrics onM.
In that paper Tian introduced, for all non-negative integerm a smooth function onM which
we will denote byTm(x). This function has been extensively studied by several authors and
it is strictly related to the stability of Kähler–Einstein metrics. Zelditch[21] showed that
Tm(x) admits an asymptotic expansion (in the variablem) and Lu[14] calculates the first
three terms of this expansion (seeSection 2). The first observation of the present article is
that Tian’s function is, up to the factormn (n is the complex dimension ofM) one of the key
ingredients in the framework of quantization of Kähler manifolds carried out in[3–7,15,16].
In this context the function is denoted byεm(x) and it is called theEpsilon function. Cahen,
Gutt and Rawnsley[4,5], starting with a geometric quantization of a Kähler manifold(M,ω)

∗ Corresponding author.
E-mail addresses:claudio.arezzo@unipr.it (C. Arezzo), loi@ssmain.uniss.it (A. Loi).

0393-0440/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0393-0440(02)00175-4



88 C. Arezzo, A. Loi / Journal of Geometry and Physics 47 (2003) 87–99

introduced by Kostant and Souriau, beautifully generalized Berezin’s method[3] to the case
of compact Kähler manifolds and, under suitable conditions, they obtain a deformation
quantization of(M,ω).

The concept of quantization deformation started with[1,2]. It is defined in terms of a star
product which is an associative formal deformation of the usual product of functions and of
the Lie algebra structure given by the Poisson bracket{, } associated to the symplectic form
ω (hereω is the Kähler structure associated to the Kähler metricg). The method to construct
a∗-product for compact Kähler manifolds given by C–G–R involves making a correspon-
dence between operators and functions (their Berezin symbols), transferring the operator
composition to the symbols, introducing a suitable parameter into the Berezin composition
of symbols, taking the asymptotic expansion in this parameter on a large algebra of func-
tions and then showing that the coefficients of this expansion satisfy the cocycle conditions
to define a star product on the smooth functions (seeSection 3). In general to define and
to find this asymptotic expansion is a difficult task. In[4,5] C–G–R considered a special
class of quantization, calledregular, where the functionεm(x) is constant for allm ≥ 1.
Examples of Kähler manifolds which admit a regular quantization are the homogeneous
and simply connected Kähler manifolds. In[4], the existence of a (convergent)∗-product
for compact coadjoint orbits and in[11] for general compact coadjoint orbits was shown.
It is worth to mention that in[17] can be found an analogous result for general Kähler
manifolds.

The aim of this paper is two-fold. Firstly, inTheorem 4.3we observe that an asymptotic
expansion given by C–G–R works for the (larger) class of projectively induced Kähler forms
onM. Secondly, disregarding the applications to the theory of quantization (actually using
some of the results of this theory), we study the functionεm and some of its geometric
properties. In particular we address the following natural problems:

1. Classify all Kähler manifolds which admit a regular quantization.
2. Study when the Zelditch’s asymptotic expansion ofTm(x) is finite.

Our first result isTheorem 5.3where we prove that a regular quantization of a compact
homogeneous Kähler manifold is necessarily homogeneous andTheorem 5.6where we
describe the link between Zelditch’s asymptotic expansion and the expansion given by
Theorem 4.3, proving that the knowledge of the expansion ofTheorem 4.3completely
determines the one ofTm(x) (and ofεm(x)).

The relevance of this fact lies in that the explicit calculation ofTm(x) is usually very hard
while the one ofTheorem 4.3is determined more easily from the knowledge of Calabi’s
diastasis function. In factTm(x) can be computed by knowing all the powers of the quantum
line bundle overM and by an explicit calculation of an orthonormal basis for theL2-metric,
while the expansion ofTheorem 4.3requires only the computation (independently ofm) of
Calabi’s function.

The paper is organized as follows. InSection 2we recall the Tian’s construction for
polarized Kähler metrics, we give the definition of the functionTm(x) and we describe
its Zelditch’s asymptotic expansion. InSection 3we recall the definition of the function
εm(x) in the context of quantization of Kähler manifolds, its link withTm(x) and the C–G–R
construction. InSection 4we proveTheorem 4.3. Finally,Section 5is dedicated to problems
1 and 2; our main results areTheorems 5.3, 5.5 and 5.6.
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2. The work of Tian, Zelditch and Lu

LetM be a projective algebraic manifold, namely a compact complex manifold which
admits a holomorphic embedding into some complex projective spaceCPN . The hyperplane
bundle onCPN restricts to an ample line bundleL onM, which is called apolarization
onM. A Kähler metricg onM is polarizedwith respect toL if the corresponding Kähler
form ω represents the first Chern classc1(L) of L and this happens if and only ifω is an
integral form. Given any polarized Kähler metricg onM, one can find a hermitian metric
h onL with its Ricci curvature form Ric(h) = ω. Here Ric(h) is the 2-form onM defined
by the equation:

Ric(h) = − i

2π
∂∂̄ logh(σ(x), σ(x)), (1)

for a trivializing holomorphic sectionσ : U ⊂ M → L \ {0} of L.
For each positive integerm, we denote byLm = L⊗m themth tensor power ofL. It is a

polarization of the Kähler metricmgand the hermitian metrich induces a natural hermitian
metric hm on Lm such that Ric(hm) = mω. Denote byH0(M,Lm) the space of global
holomorphic sections ofLm. It is in a natural way a (finite dimensional) hermitian space
with respect to the norm

‖s‖hm = 〈s, s〉hm =
∫
M

hm(s(x), s(x))
ωn

n!
(x) ∀s ∈ H0(M,Lm). (2)

For sufficiently largem we can define a holomorphic embedding ofM into a complex
projective space as follows. Let(sm0 , . . . , s

m
dm−1), be a orthonormal basis forH0(M,Lm)

and letσ : U → L be a trivializing holomorphic section on the open setU ⊂ M. Define
the map

ϕσ : U → C
dm \ {0} : x �→

(
s0(x)

σ(x)
, . . . ,

sdm−1(x)

σ(x)

)
. (3)

If τ : V → L is another holomorphic trivialization then there exists a non-vanishing
holomorphic functionf onU ∩ V such thatσ(x) = f(x)τ(x). Therefore, one can define a
holomorphic map

ϕm : M → CPdm−1, (4)

whose local expression in the open setU is given by(3). SinceL is ample, by Kodaira’s
theorem form sufficiently large, the mapϕm is an embedding.

Let gFS be the standard Fubini–Study metric onCPdm−1, namely the metric whose
associated Kähler form is given by

ωFS = i

2π
∂∂̄ log

dm−1∑
j=0

|zj|2, (5)

for a homogeneous coordinate system [z0, . . . , zdm−1] in CPdm−1. This restricts to a Kähler
metricgm = ϕ∗

mgFS onM. Its associated Kähler formωm = ϕ∗
mωFS is cohomologous to

mω and is polarized with respect toLm. Tian[20] christened the set of normalized metrics
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gm/m as theBergmannmetrics onM with respect toL and solves a conjecture posed by Yau
by proving that the sequencegm/mC2-converges to the polarized metricg. This result was
further generalized by Ruan[18] who proved theC∞-convergence. As already observed
by Tian, the difference betweengm/m and the metricg can be measured by the function

Tm(x) =
dm−1∑
j=0

‖smj (x)‖2
hm
. (6)

Indeed, it is easily seen that for all non-negative integerm

ωm

m
= ω + i

2πm
∂∂̄ logTm(x). (7)

Tian’s Theorem was generalized by Zelditch[21], who has used the theory of Szegö Kernel
on the unit circle bundleL∗ overM, which proves the following theorem.

Theorem 2.1 (Zelditch). There is a complete asymptotic expansion

Tm(x) =
dm−1∑
j=0

‖smj (x)‖2
hm

= a0(x)m
n + a1(x)m

n−1 + a2(x)m
n−2 + · · · , (8)

for certain smooth coefficientsaj(x) with a0 = 1. More precisely, for any m

‖Tm(x)−
∑
j<R

aj(x)m
n−j‖Ck ≤ CR,km

n−R,

whereCR,k depends onR, k and the manifoldM.

Recently Lu[14], by using Tian’s peak section method, proved the following theorem.

Theorem 2.2 (Lu). Each coefficientsaj(x), given by the asymptotic expansion(8) is a
polynomial of the curvature and its covariant derivatives at x of the metric g. Such a
polynomials can be found by finitely many steps of algebraic operations. Furthermore
a1(x) = ρ/2, whereρ is the scalar curvature of the polarized metric g.

3. The work of Cahen, Gutt and Rawnsley

In the quantum mechanics terminology a couple(L, h) such that Ric(h) = ω is called
a geometric quantizationof the Kähler manifold(M,ω) andL is called aquantum line
bundle. For any non-negative integerm, (Lm, hm) is a geometric quantization of the Kähler
manifold (M,mω). Let x ∈ M andq ∈ Lm \ {0} a fixed point of the fibre overx. If one
evaluatess ∈ H0(M,Lm) at x, one gets a multipleδq(s) of q, i.e. s(x) = δq(s)q. The map
δq : H0(M,Lm) → C is a continuous linear functional[4] hence by Riesz’s theorem, there
exists a uniqueemq ∈ H0(M,Lm) such thatδq(s) = 〈s, emq 〉hm ∀s ∈ H0(M,Lm), i.e.

s(x) = 〈s, emq 〉hmq. (9)
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It follows, by (9), that

emcq = c̄−1emq ∀c ∈ C
∗.

The holomorphic sectionemq is called thecoherent staterelative to the pointq. Thus, for all
m ≥ 1, one can define a smooth function onM

εm(x) = 1

mn
hm(q, q)‖emq ‖2

hm
, (10)

whereq ∈ Lm \ {0} is any point on the fibre ofx. Now it is easily seen that

mnεm(x) = hm(q, q)‖emq ‖2
hm

=
dm−1∑
j=0

hm(s
m
j (x), s

m
j (x)) = Tm(x), (11)

whereTm(x) is defined by(6) and wheresmj is an orthonormal basis forH0(M,Lm). This
gives the claimed link between the functionεm(x) andTm(x).

Remark 3.1. The factor 1/mn in the definition(10) does not appear in the definition of
εm(x) given in[4,5] since they consider theL2-product∫

M

hm(s(x), s(x))
(mω)n

n!
(x), (12)

which equalsmn times theL2-product‖ · ‖2
hm

given by(2).

LetA : H0(L,M) → H0(L,M) be a linear operator. The symbol ofA is the real analytic
function onM defined by

Â(x) = 〈Aeq, eq〉h
〈eq, eq〉h , q ∈ Lx \ {0},

whereLx denotes the fibre ofx. The functionÂ has an analytic continuation to an open
neighbourhood of the diagonalM × M̄ given by

Â(x, ȳ) = 〈Aeq, eq′ 〉h
〈eq, eq′ 〉h , q ∈ Lx \ {0}, q′ ∈ Ly \ {0}.

We denote byÊ(L) the space of symbols of bounded linear operators. The composition
of operators onH0(M,L) gives rise to a product for the corresponding symbols, which is
associative. It is given by the integral formula

(Â ∗ B̂)(x) =
∫
M

Â(x, ȳ)B̂(y, x̄)ψ(x, y)ε(y)
ωn

n!
(y), (13)

where

ψ(x, y) = |〈eq, eq′ 〉h|2
‖eq‖2

h‖eq′ ‖2
h

,

is the so called 2-point function globally defined function onM×M. The quantization isreg-
ular if εm is constant for allm ≥ 1. The proof of the following proposition can be found in[4].
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Proposition 3.2. Let (L, h) be a regular quantization of a Kähler manifold(M,ω) then
the following facts hold true:

(i) Ê(Lm) ⊂ Ê(Lm+1);
(ii) ∪mÊ(Lm) is dense onC0(M).

From the nesting property one sees that ifÂ, B̂ belongs toÊ(Ll),m ≥ l one may define

(Â ∗m B̂)(x) = mn
∫
M

Â(x, ȳ)B̂(y, x̄)ψm(x, y)εm(y)
ωn

n!
(y). (14)

Here

ψm(x, y) =
|〈emq , emq′ 〉hm |2

‖emq ‖2
hm

‖em
q′ ‖2

hm

,

is the 2-point function forLm. If the quantization is regular then one can prove that
ψm(x, y) = ψm(x, y). Observe also that

1 = 1 ∗m 1 = mn
∫
M

ψm(x, y)εm(y)
ωn

n!
(y). (15)

In [5], it can be found the proof of the following theorem.

Theorem 3.3. Let (L, h) be a regular quantization of a Kähler manifold(M,ω). Then the
following facts hold true:

(i) For anyf ∈ Ê(Ll) the integral

Fm(x) = mn
∫
M

f(x, ȳ)ψm(x, y)
ωn

n!
(y), m ≥ l, (16)

admits an asymptotic expansion(as m goes to infinity)

Fm(x) ∼ m−rCr(f )(x), (17)

where theCr ’s are smooth differential operators of order2r depending only on the
geometry ofM. Moreover, the leading term is given byC0(f ) = f .

(ii) The∗m-product given by(14)admits an asymptotic expansion for m tending to infinity

Â ∗m B̂ ∼ m−rCr(Â, B̂),

whereCr are smooth bidifferential operators defined by the geometry alone. Further-
more

C0(Â, B̂)(x) = Â(x)B̂(x), (18)

(C1(Â, B̂)− C1(B̂, Â))(x) = i

π
{Â, B̂}(x), (19)

where{, } is the Poisson bracket of functions on M associated toω.

In the case of flag manifolds or generalized flags manifolds the asymptotic expansion
defined above defines an associative star product (see[5,11]).
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4. An asymptotic expansion for projectively induced Kähler metrics

We start by defining the diastasis function. We refer to[8] for details and further results.
A potential for the Kähler formω is a real valued functionΦ defined on a open setU ⊂ M

satisfying

ω = i

4π
∂̄∂Φ.

A potential is not unique: it is defined up to the sum with the real part of a holomorphic func-
tion. Therefore, sinceω is real analytic a potentialΦ can be complex analytically continued
to an open neighbourhoodV ⊂ U × Ū of the diagonal. Denote this extension byΦ(x, ȳ).
It is holomorphic inx and antiholomorphic iny and, with this notation,Φ(x) = Φ(x, x̄).

Calabi’s diastasis functionD : V → R, is defined by

D(x, y) = Φ(x, x̄)+Φ(y, ȳ)−Φ(x, ȳ)−Φ(y, x̄).

It is real valued sinceΦ(x, ȳ) = Φ(x̄, y) and it is independent from the potential chosen.

Example 4.1. In the case ofM = CPN endowed with the Fubini–Study formωFS the
diastasis can be written in terms of the coordinates inC

N+1 as

DFS(π(z), π(w)) = 2 log
‖z‖2‖w‖2

|〈z,w〉|2 ,

whereπ : C
N+1 \ {0} → CPN is the canonical projection and where we are denoting

by 〈·, ·〉 the standard hermitian metric onCN+1. In particularD > 0 unlessπ(z) = π(w)

whereD = 0. Observe also that the function e−DFS(π(z),π(w))/2 = |〈z,w〉|2/‖z‖2‖w‖2 is
globally defined onCPN × CPN and vanishes on the diagonal.

Following [5] we now describe the link between the diastasis function and the Epsilon
function. First since the functionεm(x) is real analytic we can take its analytic extension
εm(x, ȳ) to a neighbourhood of the diagonal holomorphic in the first variable and antiholo-
morphic in the second. One can prove the following (see formula (1.11), Section 1 of[5])

e−mD(x,y)/2|εm(x, ȳ)|2 = εm(x)εm(y)ψm(x, y), (20)

where

ψm(x, y) =
|〈emq , emq′ 〉hm |2
‖emq ‖2

h‖emq′ ‖2
hm

,

is the 2-point function forLm (cfr. previous section).
Observe that since the right hand side of(20) is globally defined onM × M then the

function e−mD(x,y)/2|εm(x, ȳ)|2 is a well-defined function onM × M even if the single
functions e−mD(x,y)/2 and|εm(x, ȳ)|2 are a priori defined only in a neighbourhood of the
diagonal.

From now on we will assume that the metricg (resp. the associated Kähler formω) is
projectively induced, namely there exists a holomorphic embeddingϕ : M → CPN such
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that ϕ∗gFS = g (equivalentlyϕ∗ωFS = ω). Observe that this condition is automatically
satisfied when(M,ω) admits a regular quantization. Indeed by formula(7) withm = 1 one
getsω = ω1 = ϕ∗

1ωFS. As a result due to Calabi[8] the Kähler formω is then real analytic
and its diastasis functionD is obtained by the restriction, via the mapϕ, of the diastasis
functionDFS on CPN , namelyϕ∗DFS = D. Since the mapϕ is an embedding it follows
by the previous example that the diastasis functionD(x, y) vanishes if and only ifx = y

and moreover the function e−D(x,y)/2 is globally defined onM ×M. This function admits
the point of the diagonal as critical points. In fact at these points it has its maximum value,
namely 1 and e−D(x,y)/2 = 1 if and only ifx = y.

Suppose now that(L, h) is a quantization of the Kähler manifold(M,ω). In [5] the
function e−D(x,y)/2 is shown to be equal to the so calledcharacteristic functiondenoted
there byψL(x, y). Furthermore in Proposition 4, Section 1 of[5] is proved that, ifεm(x)
in constant for allm ≥ 1, then the Hessian ofψL (considered as a function of its second
argument only) is given by

Hess2ψL = −2πg. (21)

Observe that formula(21)includes the missing factor 2 in formula 1.16 of[5]. Nevertheless
a careful reading of[5] shows that the proof of(21) is based only on the fact that the metric
g is projectively induced, beingεm(x) constant and hence it is still valid for the (larger)
class of projectively induced Kähler metrics.

This also implies that Proposition 2 in Section 2 of[5] generalizes for projectively induced
Kähler metrics.

Proposition 4.2. Let (M, g) be a compact Kähler manifold and letω be its associated
Kähler form. Let V be an open neighbourhood of the zero section of the tangent bundle
p : TM → M, such that the mapα : V → M×M,X �→ (p(X),expp(x)X) is well-defined.
Suppose that the metric g is projectively induced and letψL be the characteristic function
onM ×M. Then there exists an open neighbourhood W of the zero section and a smooth
embeddingµ : W → TM such that:

(−logψL ◦ α ◦ µ)(X) = πgp(X)(X,X).

By the previous proposition and by a slightly modification of the proof of (i) ofTheorem
3.3one gets an asymptotic expansion for projectively induced Kähler metrics.

Theorem 4.3. Let (M, g) be a compact Kähler manifold and suppose g is projectively
induced. Letf(x, y) be a function defined in a neighbourhood of the diagonal inM ×M

such thate−mD(x,y)/2f(x, y) is globally defined and smooth onM × M for m sufficiently
large. Then the integral

Fm(x) = mn
∫
M

e−mD(x,y)/2f(x, y)
ωn

n!
(y), (22)

admits an asymptotic expansion(as m goes to infinity)

Fm(x) ∼
∑
r≥0

m−rCr(f )(x), (23)
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wheref(x) is defined asf(x, x) and where theCr ’s are smooth differential operators of
order 2r depending only on the geometry of M. Moreover, the leading term is given by
C0(f) = f .

In the casef = 1 we will denote bybj(x) the function of the previous expansion, namely

Cj(1)(x) = bj(x). (24)

Remark 4.4. The further step to obtain a quantization deformation for projectively induced
Kähler forms could be to generalize the asymptotic expansion given by (ii) inTheorem 3.3
for this class of Kähler forms.

5. Geometric properties of the Epsilon function

Let (L, h) be a geometric quantization of a Kähler manifold(M,ω). In this last section
we attack problems 1 and 2 posed inSection 1. We start with problem 1 and so we try to
understand what kind of properties are enjoyed by the Kähler forms which admit a regular
quantization. First of all as we have already pointed out such a Kähler forms are projectively
induced. Secondly, a large class of these forms is given by the following (see[4] for a proof).

Theorem 5.1. A quantization(L, h) of a homogeneous and simply connected compact
Kähler manifold(M, g) is regular.

Recall that a Kähler manifold(M,ω) is homogeneous if the group Aut(M)∩ Isom(M, g)
acts transitively onM, where Aut(M) denotes the group of holomorphic diffeomorphisms
of M and Isom(M, g) the isometry group of(M, g) (g denotes as usual the Kähler metric
associated toω).

Remark 5.2. Note that the condition of simply connectedness inTheorem 5.1cannot be
relaxed. In fact then-dimensional complex torusM = C

n/Z2n endowed with the flat
Kähler formω is a homogeneous Kähler manifold. On the other hand the flat metric cannot
be projectively induced (see Lemma 22 in[19] for a proof) and hence in particular any
quantization of(M,ω) cannot be regular (see also[13] for the calculation of the Epsilon
function in this case).

In view of Theorem 5.1the following question naturally arises:Is it true that a Kähler
manifold(M,ω)which admits a regular quantization is necessarily homogeneous? We give
a partial answer to this question in the following theorem.

Theorem 5.3. Let (M,ω) be a compact homogeneous and simply connected Kähler mani-
fold. Letω̃ be a Kähler form on M cohomologous toω which admits a regular quantization.
Then there existsf ∈ Aut(M) such thatf ∗ω̃ = ω and hence(M, ω̃) is homogeneous.

Proof. By Theorem 5.1(M,ω) admits a regular quantization and hence the functionεm is
constant for allm ≥ 1. This implies that all the coefficients of the asymptotic expansion(8)
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of Tm(x) = mnεm(x) are constant. In particular, byTheorem 2.2the scalar curvature of the
metricg (the metric whose associated Kähler form isω) is constant. For the same reason the
scalar curvature of the metricg̃ associated tõω is constant. Therefore, by applying Theorem
B in [10] one can findf ∈ Aut(M) such thatf ∗ω̃ = ω. �

Corollary 5.4. Let ω̃ be a Kähler form onCPN and suppose that(CPN, ω̃) admits a
regular quantization. Then there exists a natural number k andf ∈ PGL(N + 1,C)) (the
projective linear group) such thatf ∗ω̃ = kωFSwhereωFS is the Fubini–Study Kähler form.

Proof. Since the first betti number ofCPN is 1 there exists a natural numberk such that
ω̃ is cohomologous tokωFS and thus byTheorem 5.3there existsf ∈ PGL(N + 1,C) =
Aut(CPN) satisfyingf ∗ω̃ = kωFS. �

Another case when the answer to the above question is affirmative is whenM is a complete
intersection submanifold ofCPN .

Theorem 5.5. Let (M,ω) be a compact manifold which admits a regular quantization.
Suppose thatϕ1(M) is a complete intersection submanifold ofCPd1−1, where the mapϕ1
is the embedding given by formula(4) with m = 1. Then(M,ω) is either a quadric or a
totally geodesics projective space.

Proof. As in the proof ofTheorem 5.3we deduce that the scalar curvature ofg is con-
stant. Beingϕ1(M) a complete intersection and beingg projectively induced we can apply
Kobayashi’s theorem[12] to conclude thatM is infact a quadric or a totally geodesics
projective space. �

We now consider problem 2 and then we suppose that the Zelditch’s expansion ofTm(x)

is finite. This means that there exists a natural numberp such that

εm(x) = Tm(x)

mn
= 1 +

p∑
j=1

aj(x)

mj
. (25)

This condition is obviously satisfied in the case of a regular quantization (withp = n).
Indeed, whenεm is constant it follows by(11) that

εm = dimH0(M,Lm)

mn vol(M)
,

and dimH0(M,Lm) is a polynomial of degree dimM inmby Riemann–Roch–Hirzebruch’s
formula (see[9]). It is also easy to give examples when the asymptotic expansion ofTm(x)

cannot be finite. For example, consider the complex torus endowed with the flat metric.
If the Zelditch’s expansion ofTm(x) were finite then allaj would be constant since they
depend on the curvature ofg (byTheorem 2.2). Thus the Epsilon function would be constant
which is impossible byRemark 5.2.
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In the case of finite asymptotic expansion we get by(25)that, in a suitable neighbourhood
of the diagonal

εm(x, ȳ) = 1 +
p∑
j=1

aj(x, ȳ)

mj
,

whereaj(x, ȳ) are the analytic extensions of the functionsaj(x), j = 1, . . . , p. Conse-
quently

|εm(x, ȳ)|2 = 1 +
2p∑
j=1

ãj(x, y)

mj
, (26)

where

ã1(x, y) = a1(x, ȳ)+ a1(x̄, y), ã2(x, y) = |a1(x, ȳ)|2 + a2(x, ȳ)+ a2(x̄, y),

and so on. Ifω is projectively induced then e−mD(x,y)/2 is globally defined onM × M.
On the other hand e−mD(x,y)/2|εm(x, ȳ)|2 is globally defined onM ×M for m sufficiently
large (cfr.Section 4) and then e−mD(x,y)/2ãj(x, y) are globally defined onM × M for all
j = 1, . . . ,2p. Therefore

mn
∫
M

e−mD(x,y)/2|εm(x, ȳ)|2ω
n

n!
(y)

= mn
∫
M

e−mD(x,y)/2ω
n

n!
(y)+

2p∑
j=1

mn

mj

∫
M

e−mD(x,y)/2ãj(x, y)
ωn

n!
(y).

We can now applyTheorem 4.3to the above two addenda and get

εm(x) = mn
∫
M

e−mD(x,y)/2|εm(x, ȳ)|2ω
n

n!
(y)

∼ 1 +
∑
r≥1

br(x)

mr
+

2p∑
j=1

∑
r≥0

Cr(ãj(x, x))

mr+j
.

The first equality follows by formulae(15) and (20)and thebj ’s are defined by(24). Hence
by takingp = 1 and developing up to order 2 inr

εm(x) = 1 + a1(x)

m
+ a2(x)

m2
+ R(m, x)

= 1 + b1(x)+ C0(ã1(x, x))

m
+ b2(x)+ C1(2a1(x))+ C0(2a2(x)+ a2

1(x))

m2

+S(m, x),
where limm→∞m2R(m, x) = limm→∞m2S(m, x) = 0.

Then we get

b1(x)+ C0(ã1(x, x)) = b1(x)+ 2a1(x) = a1(x),
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namely

a1(x)+ b1(x) = 0, (27)

and

b2(x)+ C1(2a1)+ C0(2a2(x)+ a2
1(x)) = a2(x),

and by(27)

a2(x) = −b2
1(x)− b2(x)+ 2C1(b1).

Next, we do the same forp = 2 and so on. Therefore, one can recursively calculate all
functionsaj(x) and hence the functionεm(x). We have then proved the following theorem.

Theorem 5.6. Let (L, h) be a quantization of a compact Kähler manifold(M,ω) with
projectively induced Kähler formω. Suppose that Zelditch’s asymptotic expansion of the
functionTm(x) is finite. Then the functionεm(x) can be obtained by the knowledge of the
bj(x)’s and of the operatorsCj ’s applied to thebk ’s.

Remark 5.7. Observe that, as we have already noticed, in the case of a regular quantization
the Kähler formω is automatically projectively induced and the asymptotic expansion of
the function Epsilon is finite. In this case the proof ofTheorem 5.6is immediate (cfr.[5]).

Corollary 5.8. In the same hypothesis ofTheorem 5.6suppose further that thebj ’s are
constant. Then the quantization is regular.

Proof. It follows by the very definition of theCj ’s thatCj(bk) = bkCj(1) = bjbk, if the
bk ’s are constant. Then, byTheorem 5.6, εm is determined only by thebj ’s and hence it is
constant. �
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